Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Microbiol Spectr ; : e0292222, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2137478

ABSTRACT

In keeping with the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the COVID-19 causative agent, PCR assays have been developed to rapidly detect SARS-CoV-2 variants, which have emerged since the first (Alpha) variant was identified. Based on specific assortment of SARS-CoV-2 spike-protein mutations (ΔH69/V70, E484K, N501Y, W152C, L452R, K417N, and K417T) among the major variants known to date, Seegene Allplex SARS-CoV-2 Variants I and Variants II assays have been available since a few months before the last (Omicron) variant became predominant. Using S gene next-generation sequencing (NGS) as the SARS-CoV-2 variant identification reference method, we assessed the results of SARS-CoV-2-positive nasopharyngeal swab samples from two testing periods, before (n = 288, using only Variants I) and after (n = 77, using both Variants I and Variants II) the appearance of Omicron. The Variants I assay allowed correct identification for Alpha (37/37), Beta/Gamma (28/30), or Delta (220/221) variant-positive samples. The combination of the Variants I and Variants II assays allowed correct identification for 61/77 Omicron variant-positive samples. While 16 samples had the K417N mutation undetected with the Variants II assay, 74/77 samples had both ΔH69/V70 and N501Y mutations detected with the Variants I assay. If considering only the results by the Variants I assay, 6 (2 Beta variant positive, 1 Delta variant positive, and 3 Omicron variant positive) of 365 samples tested in total provided incorrect identification. We showed that the Variants I assay alone might be more suitable than both the Variants I and Variants II assays to identify currently circulating SARS-CoV-2 variants. Inclusion of additional variant-specific mutations should be expected in the development of future assays. IMPORTANCE Omicron variants of SARS-CoV-2 pose more important public health concerns than the previously circulating Alpha or Delta variants, particularly regarding the efficacy of anti-SARS-CoV-2 vaccines and therapeutics. Precise identification of these variants highly requires performant PCR-based assays that allow us to reduce the reliance on NGS-based assays, which remain the reference method in this topic. While the current epidemiological SARS-CoV-2 pandemic context suggests that PCR assays such as the Seegene Variants II may be dispensable, we took advantage of NGS data obtained in this study to show that the array of SARS-CoV-2 spike protein mutations in the Seegene Variants II assay may be suboptimal. This reinforces the concept that initially developed PCR assays for SARS-CoV-2 variant detection could be no longer helpful if the SARS-CoV-2 pandemic evolves to newly emerging variants.

2.
Diagnostics (Basel) ; 12(6)2022 May 28.
Article in English | MEDLINE | ID: covidwho-1869512

ABSTRACT

We used nasopharyngeal swab samples of patients with a symptomatic (n = 82) or asymptomatic (n = 20) coronavirus disease 2019 (COVID-19) diagnosis to assess the ability of antigen detection tests to infer active (potentially transmissible) or inactive (potentially non-transmissible) infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using the subgenomic RNA (sgRNA) as an active replication marker of SARS-CoV-2, 48 (76.2%), 56 (88.9%), and 63 (100%) of 63 samples with sgRNA positive results tested positive with the SD BIOSENSOR STANDARD Q COVID-19 Ag (Standard Q), the SD BIOSENSOR STANDARD F COVID-19 Ag FIA (Standard F), or the Fujirebio LUMIPULSE G SARS-CoV-2 Ag (Lumipulse) assay, respectively. Conversely, 37 (94.9%), 29 (74.4%), and 7 (17.9%) of 39 samples with sgRNA negative results tested negative with Standard Q, Standard F, or Lumipulse, respectively. Stratifying results by the number of days of symptoms before testing revealed that most antigen positive/sgRNA positive results were among samples tested at 2-7 days regardless of the assay used. Conversely, most antigen negative/sgRNA negative results were among samples tested at 16-30 days only when Standard Q or Standard F were used. In conclusion, based on our findings, a negative antigen test, especially with the Lumipulse assay, or a positive antigen test, especially with the Standard F assay, may suggest, respectively, the absence or presence of replication-competent SARS-CoV-2.

3.
Int J Legal Med ; 136(3): 935-939, 2022 May.
Article in English | MEDLINE | ID: covidwho-1653467

ABSTRACT

We examined 29 autopsy cases (investigated between October 2020 and February 2021) whose postmortem swabs tested positive for SARS-CoV-2. Twenty-two of 29 cases died while hospitalized (H), while the remaining 7 cases were not hospitalized (NH). Since we included only cases in which the time since death was known (excluding unwitnessed NH deaths), the interval between death and postmortem swab(s) was registered, with a mean NH value of 5.50 days and a mean H value of 3.98 days. The mean age of NH was 65 years, while H were older (mean age: 73 years). Twenty-eight nasopharyngeal and 27 lungs postmortem swabs were obtained and real-time reverse transcriptase‒polymerase chain reaction assay for total and replicative SARS-CoV-2 RNA and mRNA detection was performed. Although the mean death-postmortem swabs interval was higher in NH than in H, the mean viral load of NH was higher than that of H (2.53 × 1011 copies/mL vs 9.31 × 108 copies/mL). In 13/29 cases (6 NH and 7 H), indicators of active replication were found. The relationship between the presence of replicative mRNA and death without hospitalization and that between the minimum cycle threshold value of SARS-CoV-2 RNA and the cycle threshold value of replicative SARS-CoV-2 mRNA were found to be statistically significant (with respective P values of 0.013 and 0.000). Therefore, especially in NH, full compliance with guidelines on biological safety in the autopsy room is essential, and no autopsy can be performed on infected cases in a structure that does not meet the established safety criteria.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Autopsy , COVID-19/diagnosis , Humans , RNA, Messenger , RNA, Viral , Viral Load
4.
Microbiol Spectr ; 9(3): e0069521, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1597074

ABSTRACT

Bacterial pneumonia is a challenging coronavirus disease 2019 (COVID-19) complication for intensive care unit (ICU) clinicians. Upon its implementation, the FilmArray pneumonia plus (FA-PP) panel's practicability for both the diagnosis and antimicrobial therapy management of bacterial pneumonia was assessed in ICU patients with COVID-19. Respiratory samples were collected from patients who were mechanically ventilated at the time bacterial etiology and antimicrobial resistance were determined using both standard-of-care (culture and antimicrobial susceptibility testing [AST]) and FA-PP panel testing methods. Changes to targeted and/or appropriate antimicrobial therapy were reviewed. We tested 212 samples from 150 patients suspected of bacterial pneumonia. Etiologically, 120 samples were positive by both methods, two samples were culture positive but FA-PP negative (i.e., negative for on-panel organisms), and 90 were negative by both methods. FA-PP detected no culture-growing organisms (mostly Staphylococcus aureus or Pseudomonas aeruginosa) in 19 of 120 samples or antimicrobial resistance genes in two culture-negative samples for S. aureus organisms. Fifty-nine (27.8%) of 212 samples were from empirically treated patients. Antibiotics were discontinued in 5 (33.3%) of 15 patients with FA-PP-negative samples and were escalated/deescalated in 39 (88.6%) of 44 patients with FA-PP-positive samples. Overall, antibiotics were initiated in 87 (72.5%) of 120 pneumonia episodes and were not administered in 80 (87.0%) of 92 nonpneumonia episodes. Antimicrobial-resistant organisms caused 78 (60.0%) of 120 episodes. Excluding 19 colistin-resistant Acinetobacter baumannii episodes, AST confirmed appropriate antibiotic receipt in 101 (84.2%) of 120 episodes for one or more FA-PP-detected organisms. Compared to standard-of-care testing, the FA-PP panel may be of great value in the management of COVID-19 patients at risk of developing bacterial pneumonia in the ICU. IMPORTANCE Since bacterial pneumonia is relatively frequent, suspicion of it in COVID-19 patients may prompt ICU clinicians to overuse (broad-spectrum) antibiotics, particularly when empirical antibiotics do not cover the suspected pathogen. We showed that a PCR-based, culture-independent laboratory assay allows not only accurate diagnosis but also streamlining of antimicrobial therapy for bacterial pneumonia episodes. We report on the actual implementation of rapid diagnostics and its real-life impact on patient treatment, which is a gain over previously published studies on the topic. A better understanding of the role of that or similar PCR assays in routine ICU practice may lead us to appreciate the effectiveness of their implementation during the COVID-19 pandemic.


Subject(s)
COVID-19/complications , Hospitals , Multiplex Polymerase Chain Reaction/methods , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/drug therapy , Aged , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , COVID-19/diagnosis , COVID-19 Testing/methods , Critical Illness , Female , Humans , Intensive Care Units , Male , Middle Aged , Pandemics , Patient Acuity , Pneumonia, Bacterial/microbiology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
5.
Diagnostics (Basel) ; 11(7)2021 Jul 05.
Article in English | MEDLINE | ID: covidwho-1295790

ABSTRACT

BACKGROUND: SARS-CoV-2 antigen detection has currently expanded the testing capacity for COVID-19, which yet relies on the SARS-CoV-2 RNA RT-PCR amplification. OBJECTIVES: To report on a COVID-19 testing algorithm from a tertiary care hospital emergency department (ED) that combines both antigen (performed on the ED) and RT-PCR (performed outside the ED) testing. METHODS: Between December 2020 and January 2021, in a priori designated, spatially separated COVID-19 or non-COVID-19 ED areas, respectively, symptomatic or asymptomatic patients received SARS-CoV-2 antigen testing on nasopharyngeal swab samples. Antigen results were promptly accessible to guide subsequent, outside performed confirmatory (RT-PCR) testing. RESULTS: Overall, 1083 (100%) of 1083 samples in the COVID-19 area and 1815 (49.4%) of 3670 samples in the non-COVID-19 area had antigen results that required confirmation by RT-PCR. Antigen positivity rates were 12.4% (134/1083) and 3.7% (66/1815), respectively. Compared to RT-PCR testing results, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of antigen testing were, respectively, 68.0%, 98.3%, 88.8%, and 94.1% in the COVID-19 area, and 41.9%, 97.3%, 27.3%, and 98.6% in non-COVID-19 area. Practically, RT-PCR tests were avoided in 50.6% (1855/3670) of non-COVID-19 area samples (all antigen negative) from patients who, otherwise, would have needed antigen result confirmation. CONCLUSIONS: Our algorithm had value to preserve RT-PCR from avoidable usage and, importantly, to save time, which translated into a timely RT-PCR result availability in the COVID-19 area.

6.
Clin Chem Lab Med ; 59(8): 1468-1476, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1171669

ABSTRACT

OBJECTIVES: Compared to RT-PCR, lower performance of antigen detection assays, including the Lumipulse G SARS-CoV-2 Ag assay, may depend on specific testing scenarios. METHODS: We tested 594 nasopharyngeal swab samples from individuals with COVID-19 (RT-PCR cycle threshold [Ct] values ≤ 40) or non-COVID-19 (Ct values >40) diagnoses. RT-PCR positive samples were assigned to diagnostic, screening, or monitoring groups of testing. RESULTS: With a limit of detection of 1.2 × 104 SARS-CoV-2 RNA copies/mL, Lumipulse showed positive percent agreement (PPA) of 79.9% (155/194) and negative percent agreement of 99.3% (397/400), whereas PPAs were 100% for samples with Ct values of <18 or 18-<25 and 92.5% for samples with Ct values of 25-<30. By three groups, Lumipulse showed PPA of 87.0% (60/69), 81.1% (43/53), or 72.2% (52/72), respectively, whereas PPA was 100% for samples with Ct values of <18 or 18-<25, and was 94.4, 80.0, or 100% for samples with Ct values of 25-<30, respectively. Additional testing of RT-PCR positive samples for SARS-CoV-2 subgenomic RNA showed that, by three groups, PPA was 63.8% (44/69), 62.3% (33/53), or 33.3% (24/72), respectively. PPAs dropped to 55.6, 20.0, or 41.7% for samples with Ct values of 25-<30, respectively. All 101 samples with a subgenomic RNA positive result had a Lumipulse assay's antigen positive result, whereas only 54 (58.1%) of remaining 93 samples had a Lumipulse assay's antigen positive result. CONCLUSIONS: Lumipulse assay was highly sensitive in samples with low RT-PCR Ct values, implying repeated testing to reduce consequences of false-negative results.


Subject(s)
COVID-19/diagnosis , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing , Humans , Limit of Detection , Nasopharynx/virology , Reagent Kits, Diagnostic , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
9.
Eur J Clin Microbiol Infect Dis ; 40(2): 269-277, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-743736

ABSTRACT

The increasing COVID-19 widespread has created the necessity to assess the diagnostic accuracy of newly introduced (RT-PCR based) assays for SARS-CoV-2 RNA detection in respiratory tract samples. We compared the results of the Allplex™ 2019-nCoV assay with those of the Simplexa™ COVID-19 Direct assay and the Quanty COVID-19 assay, respectively, all performed on 125 nasal/oropharyngeal swab samples of patients with COVID-19 suspicion. Fifty-four samples were positive, and 71 were negative with the Allplex™ assay, whereas 47 of 54 samples were also positive with the Simplexa™ assay. The Quanty assay detected 55 positive samples, including the 54 positive samples with the Allplex™ assay and 1 sample that was Allplex™ negative but Simplexa™ positive. Using a consensus result criterion as the reference standard allowed to resolve the eight samples with discordant results (one Allplex™ negative and seven Simplexa™ negative) as truly false negative. Interestingly, a Spearman's negative association was found between the viral RNA loads quantified by the Quanty assay and the CT values of RT PCRs performed with either the Allplex™ assay or the Simplexa™ assay. However, the strength of this association was higher for the Allplex™ assay (N gene, ρ = - 0.92; RdRP gene, ρ = - 0.91) than for the Simplexa™ assay (ORF1ab gene, ρ = - 0.65; S gene, ρ = - 0.80). The Allplex™ 2019-nCoV, the Simplexa™ COVID-19 Direct, and the Quanty COVID-19 assays yielded comparable results. However, the role these assays might play in future clinical practice warrants larger comparison studies.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Viral/analysis , SARS-CoV-2/genetics , Humans , Molecular Diagnostic Techniques , Nasopharynx/virology , Retrospective Studies , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL